To był problem, który "nękał" matematyków przez stulecia. Za rozwiązanie równania z 1637 roku, autorstwa matematyka Pierre de Fermata, brytyjski profesor z uniwersytetu w Oksfordzie Andrew J. Wiles otrzymał 700 tysięcy dolarów oraz prestiżową nagrodę Abela.
Andrew J. Wiles na rozwiązanie równania poświęcił 50 lat życia. Swój dowód brytyjski matematyk przedstawił w 1993 roku, a teraz otrzymał za niego od króla Norwegii prestiżową nagrodę w dziedzinie matematyki oraz 700 tysięcy dolarów.
Otrzymując nagrodę, naukowiec podkreślił, że jest to dla niego wielki zaszczyt, gdyż równanie fascynowało go od dzieciństwa. – Poznałem równanie, gdy miałem 10 lat. Wiedziałem, że muszę je rozwiązać – mówił matematyk, komentując swój sukces.
Równanie powstało w 1637 roku, rozpisał je matematyk Pierre de Fermat i od tego czasu spędzało ono sen z powiek matematykom na całym świecie. Słynne "Wielkiego Twierdzenia Fermata" mówi, że „dla liczby naturalnej n>2 nie istnieją takie liczby naturalne dodatnie x,y,z, które spełniałyby równanie x^n+y^n=z^n”. Dowód na to twierdzenie przeprowadził dopiero brytyjski naukowiec ponad 350 lat później.
NAS member and NAS Award in Math recipient Andrew Wiles solved 300-year-old math equation: https://t.co/vA7K4F8ShA pic.twitter.com/7GcSMFu8Sg
— NatlAcad of Sciences (@theNASciences) 17 marca 2016